
Chapter 1

Fuzzy Sets

This chapter begins with a brief review of classical sets in order to
facilitate the introduction of fuzzy sets. Next the concept of membership
function is explained. It defines the degree to which an element under
consideration belongs to a fuzzy set. Fuzzy numbers are described as
a particular case of fuzzy sets. Fuzzy sets and fuzzy numbers will be
used in fuzzy logic to model words such as profit, investment, cost,
income, age, etc. Fuzzy relations together with some operations on fuzzy
relations are introduced as a generalization of fuzzy sets and ordinary
relations. They have application in database models. Fuzzy sets and
fuzzy relations play an important role in fuzzy logic.

1.1 Classical Sets: Relations and Functions

Classical sets

This section reviews briefly the terminology, notations, and basic prop-
erties of classical sets, usually called sets.

The concept of a set or collection of objects is common in our every-
day experience. For instance, all persons listed in a certain telephone
directory, all employees in a company, etc. There is a defining prop-
erty that allows us to consider the objects as a whole. The objects in
a set are called elements or members of the set. We will denote ele-
ments by small letters a, b, c, . . . , x, y, z and the sets by capital letters
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A,B,C, . . . ,X, Y, Z. Sets are also called ordinary or crisp in order to be
distinguished from fuzzy sets.

The fundamental notion in set theory is that of belonging or mem-
bership. If an object x belongs to the set A we write x ∈ A; if x is not
a member of A, we write x 6∈ A. In other words for each object x there
are only two possibilities: either x belongs to A or it does not.1

A set containing finite number of members is called finite set; oth-
erwise it is called infinite set. We present two methods of describing
sets.

Listing method

The set is described by listing its elements placed in braces; for example
A = {1, 3, 6, 7, 8}, B = {business, finance, management}. The order in
which elements are listed is of no importance. An element should be
listed only once.

Membership rule

The set is described by one or more properties to be satisfied only by
objects in the set:

A = {x | x satisfies some property or properties}.
This reads: “A is the set of all x such that x satisfies some property
or properties.” For example R = {x | x is real number} reads: “R is
the set of all x such that x is a real number”; R+ = {x|x ≥ 0, x ∈ R}
reads “R+ is the set of all x which are nonnegative real numbers.”

Universal set

The set of all objects under consideration in a particular situation is
called universal set or universe; it will be denoted by U .

Empty set

A set without elements is called empty; it is denoted by φ.

Interval

The set of all real numbers x such that a1 ≤ x ≤ a2, where a1 and a2 are
real numbers, form a closed interval [a1, a2] = {x | a1 ≤ x ≤ a2, x ∈ R}
with boundaries a1 and a2. It is also called interval number.
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Equal sets

Sets A and B are equal , denoted by A = B, if they have the same
elements.

Subset

The set A is a subset of the set B (A is included in B), denoted by
A ⊆ B, if every element of A is also an element of B. Every set is
subset of itself, A ⊆ A. The empty set φ is a subset of any set. It is
assumed that each set we are dealing with is a subset of a universal set
U .

Proper subset

A is a proper subset of B, denoted A ⊂ B, if A ⊆ B and there is
at least one element in B which does not belong to A. For instance
{a, b} ⊂ {a, b, c}. If A ⊆ B and B ⊆ C, then A ⊆ C.

Intersection

The intersection of the sets A and B, denoted by A ∩ B, is defined by

A ∩ B = {x | x ∈ A and x ∈ B}; (1.1)

A ∩ B is a set whose elements are common to A and B.

Union

The union of A and B , denoted by A ∪ B, is defined by

A ∪ B = {x | x ∈ A or x ∈ B}; (1.2)

A∪B is a set whose elements are in A or B, including any element that
belongs to both A and B.

Disjoint sets

If the sets A and B have no elements in common, they are called disjoint.

Complement

The complement of A ⊂ U , denoted by A, is the set

A = {x ∈ U | x 6∈ A}. (1.3)
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The complement of a set consists of all elements in the universal set
that are not in the given set.

Example 1.1

Given the sets

A = {1, 2, 3, 4}, B = {1, 3, 5, 6}, U = {1, 2, 3, 4, 5, 6, 7},

then using (1.1)–(1.3) we find

A ∩ B = {1, 3}, A ∪ B = {1, 2, 3, 4, 5, 6}, A = {5, 6, 7}, B = {2, 4, 7}.

2

Convex sets

Consider the universe U to be the set of real numbers R.
A subset S of R is said to be convex if and only if, for all x1, x2 ∈ S

and for every real number λ satisfying 0 ≤ λ ≤ 1, we have

λx1 + (1 − λ)x2 ∈ S.

For example, any interval S = [a1, a2] is a convex set since the above
condition is satisfied; [0, 1] and [3, 4] are convex, but [0, 1]∪ [3, 4] is not.

Venn diagrams

Sets are geometrically represented by circles inside a rectangle (the uni-
versal set U). In Fig. 1.1 are shown the sets A ∩ B and A ∪ B.

A B

A B

A B

BA∩ ∪
Fig. 1.1. Venn diagrams for A ∩ B(intersection), A ∪ B(union).

Ordered pairs

It was noted that the order of the elements of a set is not important.
However there are cases when the order is important. To indicate that



1.1. Classical Sets: Relations and Functions 5

a set or pair of two elements a and b is ordered, we write (a, b), i.e. use
parentheses instead of braces; a is called first element of the pair and b
is called second element.

Cartesian product

Cartesian product (or cross product) of the sets A and B denoted A×B
is the set of ordered pairs

A × B = {(a, b) | a ∈ A, b ∈ B}. (1.4)

Example 1.2

(a) Given
A = {1, 2, 3}, B = {1, 2},

then according to (1.4) we find

A × B = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)};

geometrically it is presented on Fig. 1.2 (a).
(b) If X,Y = R, the set of all real numbers, then

X × Y = {(x, y)|x ∈ X, y ∈ Y } = R × R

is the set of all ordered pairs which form the cartesian plane xy (see
Fig. 1.2(b)).

-

6

u u u

u u u

-
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x

1

2
y y

x

(a) (b)

Fig. 1.2. (a) Cartesian product {1, 2, 3} × {1, 2}; (b) Cartesian plane.
2
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Relations

The concept of relation is very general. It is based on the concepts of
ordered pair (a, b), a ∈ A, b ∈ B, and cartesian product of the sets A
and B.

A relation from A to B (or between A and B) is any subset < of
the cartesian product A × B. We say that a ∈ A and b ∈ B are related
by <; the elements a and b form the domain and range of the relation,
correspondingly. Since a relation is a set, it may be described by either
the listing method or the membership rule. The relation < is called
binary relation since two sets, A and B, are related.

Example 1.3

Let A = {x1, x2, x3} and B = {1, 2, 3, 4}.

We list some binary relations generated by A and B:

<1 = {(x1, 1), (x2, 1), (x3, 4)},
<2 = {(x1, 2), (x1, 3)}, <3 = {(x2, 2), (x3, 1)},
<4 = {(x1, 1), (x1, 2), (x1, 3), (x1, 4), (x2, 1), (x4, 1)}

are relations from A to B;

<5 = {(1, x2), (2, x3), (3, x1)}, <6 = {(1, x1), (2, x1)},
<7 = {(1, x1), (1, x2), (1, x4)}, <8 = {(2, x1), (3, x3)}

are relations from B to A; the empty set φ is a relation; the cross
product A × B is a relation from A to B and the cross product B × A
is a relation from B to A.

2

Functions

A function f is a relation < such that for every element x in the domain
of f there corresponds a unique element y in the range of f . For instance
the relations in Example 1.2 are not functions.

We often say that f maps x onto y; y is the image of x under f .
Then we can write f : x → y. However, it is customary to use the
notation y = f(x).
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Generalization

The notions of ordered pair, Cartesian product, relation, and function
can be generalized for higher dimensions than two. For instance when
n = 3 we have:

Ordered triple (a, b, c);
Cartesian product

A × B × C = {(a, b, c)|a ∈ A, b ∈ B, c ∈ C};

Relation from A × B to C is any subset < of A × B × C.
Function z = f(x, y) is a relation such that for every pair (x, y) in

the domain of f there corresponds a unique element z in its range.

Characteristic Function

The membership rule that characterizes the elements (members) of a set
A ⊂ U can be established by the concept of characteristic function (or
membership function) µA(x) taking only two values, 1 and 0, indicating
whether or not x ∈ U is a member of A:

µA(x) =

{

1 for x ∈ A,
0 for x 6∈ A.

(1.5)

Hence µA(x) ∈ {0, 1}. Inversely, if a function µA(x) is defined by (1.5),
then it is the characteristic function for a set A ⊂ U in the sense that
A consists of the values of x ∈ U for which µA(x) is equal to 1. In other
words every set is uniquely determined by its characteristic function.

The universal set U has for membership function µU(x) which is
identically equal to 1, i.e. µU (x) = 1. The empty set φ has for mem-
bership function µφ(x) = 0.

Example 1.4

Consider the universe U = {x1, x2, x3, x4, x5, x6} and its subset A,

A = {x2, x3, x5}.
Only three of the six elements in U belong A. Using the notation (1.5)
gives

µA(x1) = 0, µA(x2) = 1, µA(x3) = 1,

µA(x4) = 0, µA(x5) = 1, µA(x6) = 0.
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Hence the characteristic function of the set A is

µA(x) =

{

1 for x = x2, x3, x5,
0 for x = x1, x4, x6;

The set A can be represented as

A = {(x1, 0), (x2, 1), (x3, 1), (x4, 0), (x5, 1), (x6, 0)}.
2

Example 1.5

Let us try to use crisp sets to describe tall men. Consider for instance
a man as tall if his height is 180 cm or greater; otherwise the man is
not tall. The characteristic function of the set A = {tall men} then is

µA(x) =

{

1 for 180 ≤ x,
0 for 160 ≤ x < 180.

It is shown in Fig. 1.3, where the universe is U = {x | 160 ≤ x ≤ 200}.
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Fig. 1.3. Membership function of the set tall men.

Clearly this description of the set of tall men is not satisfactory
since it does not allow gradation. The word tall is vague. For instance,
a person whose height is 179 cm is not tall as well as a person whose
height is 160 cm. Yet a person whose height is 180 is tall and so is
a person with height 200 cm. Also the above definition introduces a
drastic difference between heights of 179 cm and 180 cm, thus fails to
describe realistically borderline cases.2

2

The concept of characteristic function introduced here will facili-
tate the understanding of the concept fuzzy set, the subject of the next
section.
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1.2 Definition of Fuzzy Sets

We have seen that belonging or membership of an object to a set is
a precise concept; the object is either a member to a set or it is not,
hence the membership function can take only two values, 1 or 0. The set
tall men in Example 1.5 illustrates the need to increase the describing
capabilities of classical sets while dealing with words.

To describe gradual transitions Zadeh (1965), the founder of fuzzy
sets, introduced grades between 0 and 1 and the concept of graded
membership.

Let us refer to Example 1.4. Each of the six elements of the universal
set U = {x1, x2, x3, x4, x5, x6} either belongs to or does not belong to
the set A = {x2, x3, x5}. According to this, the characteristic function
µA(x) takes only the values 1 or 0. Assume now that a characteristic
function may take values in the interval [0, 1]. In this way the concept
of membership is not any more crisp (either 1 or 0), but becomes fuzzy
in the sense of representing partial belonging or degree of membership.

Consider a classical set A of the universe U . A fuzzy set A is defined
by a set or ordered pairs, a binary relation,

A = {(x, µA(x)) | x ∈ A,µA(x) ∈ [0, 1]}, (1.6)

where µA(x) is a function called membership function; µA(x) specifies
the grade or degree to which any element x in A belongs to the fuzzy set
A. Definition (1.6) associates with each element x in A a real number
µA(x) in the interval [0, 1] which is assigned to x. Larger values of
µA(x) indicate higher degrees of membership.3

Let us express the meaning of (1.6) in a slightly modified way. The
first elements x in the pair (x, µA(x)) are given numbers or objects of
the classical set A; they satisfy some property (P ) under consideration
partly (to various degrees). The second elements µA(x) belong to the
interval (classical set) [0, 1]; they indicate to what extent (degree) the
elements x satisfy the property P .

It is assumed here that the membership function µA(x) is either
piecewise continuous or discrete.

The fuzzy set A according to definition (1.6) is formally equal to
its membership function µA(x). We will identify any fuzzy set with
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its membership function and use these two concepts as interchangeable.
Also we may look at a fuzzy set over a domain A as a function mapping
A into [0, 1].

Fuzzy sets are denoted by italic letters A,B, C, . . . and the corre-
sponding membership functions by µA(x), µB(x), µC(x), . . ..

Elements with zero degree of membership in a fuzzy set are usually
not listed.

Classical sets can be considered as a special case of fuzzy sets with
all membership grades equal to 1.

A fuzzy set is called normalized when at least one x ∈ A attains
the maximum membership grade 1; otherwise the set is called nonnor-
malized. Assume the set A is nonnormalized; then max µA(x) < 1. To
normalize the set A means to normalize its membership function µA(x),

i.e. to divide it by max µA(x), which gives µA(x)
max µA(x) .

A is called empty set labeled φ if µA(x) = 0 for each x ∈ A.
The fuzzy set A = {(x1, µA(x1))}, where x1 is the only value in

A ⊂ U and µA(x1) ∈ [0, 1], is called fuzzy singleton.
While the set A is a subset of the universal set U which is crisp, the

fuzzy set A is not.
Instead of (1.6), some authors use the notation

A = {µA(x)/x, x ∈ A,µA(x) ∈ [0, 1]},

where the symbol / is not a division sign but indicates that the top
number µA(x) is the membership value of the element x in the bottom.

Example 1.6

Consider the fuzzy set

A = {(x1, 0.1), (x2, 0.5), (x3, 0.3), (x4, 0.8), (x5, 1), (x6, 0.2)}

which also can be represented as

A = 0.1/x1 + 0.5/x2 + 0.3/x3 + 0.8/x4 + 1/x5 + 0.2/x6;

it is a discrete fuzzy set consisting of six ordered pairs. The elements
xi, i = 1, . . . , 6, are not necessary numbers; they belong to the classical
set A = {x1, x2, x3, x4, x5, x6} which is a subset of a certain universal
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set U . The membership function µA(x) of A takes the following values
on [0, 1]:

µA(x1) = 0.1, µA(x2) = 0.5, µA(x3) = 0.3,
µA(x4) = 0.8, µA(x5) = 1, µA(x6) = 0.2.

The following interpretation could be given to µA(xi), i = 1, · · · , 6.
The element x5 is a full member of the fuzzy set A, while the element
x1 is a member of A a little (µA(x1) = 0.1 is near 0); x6 and x3 are a
little more members of A; the element x4 is almost a full member of A,
while x2 is more or less a member of A.

The fuzzy set A can be given also by the table

A 4
=

x1 x2 x3 x4 x5 x6

0.1 0.5 0.3 0.8 1 0.2

where the symbol
4
= means “is defined by.”

Now we specify in two different ways the elements xi in A:
(a) Assume that xi, i = 1, · · · , 6, are integers, namely, x1 =

1, x2 = 2, x3 = 3, x4 = 4, x5 = 5, x6 = 6; they belong to the set
A = {1, 2, 3, 4, 5, 6}, a subset of the universe U = N , the set of all
integers. The fuzzy set A becomes

A = {(1, 0.1), (2, 0.5), (3, 0.3), (4, 0.8), (5, 1), (6, 0.2)};

its membership function µA(x) shown in Fig. 1.4 by dots is a discrete
one.

(b) Assume now that xi, i = 1, . . . , 6, are friends of George whose
names are as follows: x1 is Ron, x2 is Ted, x3 is John, x4 is Joe, x5 is
Tom, and x6 is Sam. They form a set of friends of George,

A = {Ron, Ted, John, Joe, Tom, Sam},

a subset of the universe U (all friends of George). The fuzzy set A here
expresses closeness of friends of George on A ⊆ U :

A = {(Ron, 0.1), (Ted, 0.5), (John, 0.3), (Joe, 0.8), (Tom, 1), (Sam, 0.2)}.
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0
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1 2 3 4 5 6 x

0.5

Fig. 1.4. Fuzzy set A = {(1, 0.1), (2, 0.5), (3, 0.3), (4, 0.8), (5, 1), (6, 0.2)}.
2

Example 1.7

Let us describe numbers close to 10.
(a) First consider the fuzzy set

A1 = {(x, µA1
(x)) | x ∈ [5, 15], µA1

(x) =
1

1 + (x − 10)2
},

where µA1
(x) shown in Fig. 1.5 is a continuous function.

The fuzzy set A1 represents real numbers close to 10.

0

1

µ

10 x

µ
A1

(x)

5 15

Fig. 1.5. Real numbers close to 10.
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(b) Integers close to 10 can be expressed by the finite fuzzy set
consisting of seven ordered pairs

A2 = {(7, 0.1), (8, 0.3), (9, 0.8), (10, 1), (11, 0.8), (12, 0.3), (13, 0.1)}.

The membership function of A2 is shown on Fig 1.6 by dots; it is a
discrete function.

0

1

µ

7 8 9 10 11 12 13 x

0.3

0.8

0.1

Fig. 1.6. Integers close to 10.

2

Example 1.8

We have seen in Example 1.5 that the description of tall men by
classical sets is not adequate. Now we employ for the same purpose
the fuzzy set T = {(x, µT (x))}, where x measured in cm belongs to the
interval [160, 200] and µT (x) is defined by (see Fig 1.7)

µT (x) =

{

1
2(30)2 (x − 140)2 for 160 ≤ x ≤ 170,

− 1
2(30)2 (x − 200)2 + 1 for 170 ≤ x ≤ 200.

The membership function µT (x) is a continuous piecewise-quadratic
function. The numbers on the horizontal axis x give height in cm and
the vertical axis µ shows the degree to which a man can be labeled tall.
According to the graph in Fig. 1.7, if a person’s height is 160 cm, the
person is a little tall (degree 0.22), 180 cm stands for almost tall (degree
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0.78), 200 cm for tall (degree 1). The segment [0.22, 1] of the vertical
axis µ expresses the quantification of the degree of vagueness of the word
tall.4

0

1

µ

0.5

160 170 180 190

x

200

T
µ (x)

Τ

Τ

0.5

0.22

0.78Τ
0.78

0.22

Fig. 1.7. Description of tall men by fuzzy set.

2

Further we define α-level interval or α-cut, denoted by Aα, as the
crisp set of elements x which belong to A at least to the degree α:

Aα = {x | x ∈ R,µA(x) ≥ α}, α ∈ [0, 1]. (1.7)

It gives a threshold which provides a level of confidence α in a decision
or concept modeled by a fuzzy set. We may use the threshold to discard
from consideration those element x in A with grades of membership
µA(x) < α.

Example 1.9

Consider Example 1.8, the set T , tall men. It has an infinite number
of α-level intervals (α-cuts) denoted by Tα where α varies between 0.22
and 1. Some α-cuts shown in Fig. 1.7 are given below:

T0.22 = {x|x ∈ R, 160 ≤ x ≤ 200}, µT (x) ≥ 0.22,

T0.5 = {x|x ∈ R, 170 ≤ x ≤ 200}, µT (x) ≥ 0.5,

T0.78 = {x|x ∈ R, 180 ≤ x ≤ 200}, µT (x) ≥ 0.78



1.3. Basic Operations on Fuzzy Sets 15

For instance we may choose as a threshold the α-cut T0.5 thus dis-
carding from consideration men whose height is below 170 cm.

2

A fuzzy set A, where the universe U = R, is convex if and only if
the α-level intervals Aα (see (1.7)) are convex for all α in the interval
(0, 1]. In such a case all α-level intervals Aα consist of one segment (see
Fig. 1.8(a)). Otherwise the set is nonconvex (see Fig. 1.8(b)).

0 x
(a) (b)

x

µ µ

1 1

Aα

normalized

nonnormalized nonnormalized

normalized

Fig. 1.8. (a) Convex fuzzy sets; (b) Nonconvex fuzzy sets.

1.3 Basic Operations on Fuzzy Sets

Consider the fuzzy sets A and B in the universe U ,

A = {(x, µA(x))}, µA(x) ∈ [0, 1],

B = {(x, µB(x))}, µB(x) ∈ [0, 1].

The operations with A and B are introduced via operations on their
membership functions µA(x) and µB(x).

Equality

The fuzzy sets A and B are equal denoted by A = B if and only if for
every x ∈ U ,

µA(x) = µB(x).
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Inclusion

The fuzzy set A is included in the fuzzy set B denoted by A ⊆ B if for
every x ∈ U ,

µA(x) ≤ µB(x).

Then A is called a subset of B.

Proper subset

The fuzzy set A is called a proper subset of the fuzzy set B denoted
A ⊂ B when A is a subset of B and A 6= B, that is

µA(x) ≤ µB(x) for every x ∈ U,
µA(x) < µB(x) for at least one x ∈ U.

}

For instance the nonnormalized sets in Fig. 1.8 (a) and (b) are proper.

Complementation

The fuzzy sets A and A are complementary if

µ
A

(x) = 1 − µA(x) or µA(x) + µ
A

(x) = 1. (1.8)

The membership function µ
A

(x) is symmetrical to µA(x) with re-
spect to the line µ = 0.5.

Intersection

The operation intersection of A and B denoted as A∩ B is defined by

µA∩B(x) = min(µA(x), µB(x)), x ∈ U. (1.9)

If a1 < a2, min(a1, a2) = a1. For instance min(0.5, 0.7) = 0.5.

Union

The operation union of A and B denoted as A∪ B is defined by

µA∪B(x) = max(µA(x), µB(x)), x ∈ U. (1.10)

If a1 < a2, max(a1, a2) = a2. For instance max(0.5, 0.7) = 0.7.
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Example 1.10

Consider the universe U = {x1, x2, x3, x4} and the fuzzy sets A and
B defined by the table

x x1 x2 x3 x4

µA(x) 0.2 0.7 1 0

µB(x) 0.5 0.3 1 0.1

Using (1.9) and (1.10) gives

x x1 x2 x3 x4

µA∩B(x) 0.2 0.3 1 0

µA∪B(x) 0.5 0.7 1 0.1
2

Schematic representation of operations on fuzzy sets

Fuzzy sets are schematically represented by their membership functions
(assumed continuous) inside of rectangles. In Fig. 1.9 are shown µA(x)
and µB(x), in Fig. 1.10 the complements µ

A
(x) and µ

B
(x), and in

Fig. 1.11 the union µA∩B(x) and the intersection µA∩B(x).

1 1

U U

µ  µ
A B

(x) (x)

Fig. 1.9. Membership function µA(x), µB(x).

Figure 1.11 shows that A∩ B ∈ A ∪ B.

Law of excluded middle and fuzzy sets

The classical sets possess an important property, the law of excluded
middle,2 expressed by A ∩ A = φ and A ∪ A = U . It is illustrated in
Fig. 1.12 by the means of Venn diagrams.
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The law of excluded middle is not valid for the fuzzy sets since
A∩A 6= φ and A∪A 6= U . This is illustrated in Fig. 1.13.

1 1

U U

µ  
A µ

B
(x)

(x)

Fig. 1.10. Membership function µ
A

(x), µ
B

(x).

1 1

U U

µ  µ(x) (x)
A∪B

A∩B

Fig. 1.11. Membership function of intersection and union.

A A A

U U

A

A ∩ A = φ A ∪ A = U

Fig. 1.12. The law of excluded middle for classical sets.

It is natural that the law of the excluded middle is not valid for
fuzzy sets. In classical sets every object does or does not have a certain
property, expressed by 1 or 0. Fuzzy sets were introduced to reflect the
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existence of objects in reality that have a property to a degree between
0 and 1. There are many shades of gray color between black and white.

11

A∩A 6= φ A∪A 6= U

Fig. 1.13. The law of excluded middle is not valid for fuzzy sets.

The lack of the law of excluded middle in fuzzy set theory makes it
less specific than that of classical set theory. However, at the same time,
this lack makes fuzzy sets more general and flexible than classical sets
and very suitable for describing vagueness and processes with incomplete
and imprecise3 information.

1.4 Fuzzy Numbers

A fuzzy number5 is defined on the universe R as a convex and normalized
fuzzy set. In Figs. 1.14(a),(b) are shown two fuzzy numbers, with a
maximum and with a flat.

For instance, the normalized fuzzy set in Fig. 1.8(a) is a fuzzy num-
ber while the sets in Fig. 1.8(b) are not. The fuzzy set in Fig. 1.7 is also
a fuzzy number.

The fuzzy set in Fig. 1.6 is a fuzzy number in the set of integers
while the fuzzy set in Fig. 1.4 is not. Also we may consider a fuzzy
number with a flat in the set of integers.

The interval [a1, a2] is called supporting interval for the fuzzy num-
ber. For x = aM the fuzzy number in Fig. 1.14 (a) has a maximum.
The flat segment (Fig. 1.14(b)) has maximum height 1; actually it is
the α-cut at the highest confidence level 1.

Fuzzy numbers will be denoted by bold capital letters A,B,C, . . . ,
and their membership functions by µA(x), µB(x), µC(x), . . . .
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1

a M 2a

x

µ

1

µ

x

a 10 a 2a b b1 1 2

(a) (b)

Fig. 1.14. Fuzzy numbers: (a) with a maximum; (b) with a flat.

Piecewise-quadratic fuzzy number

The membership function µA(x) of a piecewise-quadratic fuzzy number
shown in Fig. 1.15 is bell-shaped, symmetric about the line x = p, has a
supporting interval A = [a1, a2], and is characterized by two parameters,
p = 1

2(a1 +a2) and β ∈ (0, a2−p). The peak-point (the maximum point)
is (p, 1); 2β called bandwidth is defined as the segment (α-cut) at level
α = 1

2 between the points (p − β, 1
2) and (p + β, 1

2), called crossover
points.

1

α

0

1
2
__

a p a x

2β

(p,1)

__1
2 ) )

2
__1β,(p+

βp+
21 p−β

(p−β,

Fig. 1.15. Piecewise-quadratic fuzzy number.
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The curve on Fig. 1.15 is described by the equations

µA(x) =























1
2(p−β−a1)2 (x − a1)2 for a1 ≤ x ≤ p − β,

− 1
2β2 (x − p)2 + 1 for p − β ≤ x ≤ p + β,

1
2(p+β−a2)2 (x − a2)2 for p + β ≤ x ≤ a2,

0 otherwise.

(1.11)

The interpretation for the fuzzy number (1.11) is real numbers close
to the number p. Since the word close is vague and in that sense fuzzy,
it cannot be defined uniquely. That depends on the selection of the
supporting interval and the bandwidth which are supposed to reflect a
particular situation. For instance the fuzzy set tall men (Example 1.8)
is a particular case of (1.11) (left branch) on the interval [160, 200] with
a1 = 140, p = 200, and β = 30.

Example 1.11

The manufacturing price of a product is close to 28. It can be
described by the fuzzy number A in Fig. 1.16 where a1 = 23, a2 =
33, p = 28, β = 3.

The membership function µA(x) can be obtained from (1.11) by
substituting the specific values of a1, a2, p and β given above.

1

x0

µ

0.5
(25, 0.5) (31, 0.5)

23 25 28 31 33

A

Fig. 1.16. Product price close to 28.

2
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1.5 Triangular Fuzzy Numbers

A triangular fuzzy number A or simply triangular number with mem-
bership function µA(x) is defined on R by

A
4
= µA(x) =











x−a1

aM−a1
for a1 ≤ x ≤ aM ,

x−a2

aM−a2
for aM ≤ x ≤ a2,

0 otherwise,

(1.12)

where [a1, a2] is the supporting interval and the point (aM , 1) is the
peak (see Fig. 1.17). The third line in (1.12) can be dropped.

x0 a
M

a
2

(a
M

,1)1

α

a
1

A
A

r
l

Fig. 1.17. Triangular fuzzy number.

Often in applications the point aM ∈ (a1, a2) is located at the middle
of the supporting interval, i.e. aM = a1+a2

2 . Then substituting this value
into (1.12) gives

A
4
= µA(x) =











2 x−a1

a2−a1
for a1 ≤ x ≤ a1+a2

2 ,

2 x−a2

a1−a2
for a1+a2

2 ≤ x ≤ a2,

0 otherwise.

(1.13)

We say that (1.13) represents a central triangular fuzzy number (see
Fig. 1.18(a)). Similarly to the piecewise-quadratic fuzzy number, it is
very suitable to describe the word close (close to aM ).

Triangular numbers are very often used in the applications (fuzzy
controllers, managerial decision making, business and finance, social
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sciences, etc.). They have a membership function consisting of two
linear segments Al (left) and Ar (right) joined at the peak (aM , 1) (see
Fig. 1.17) which makes graphical representations and operations with
triangular numbers very simple. Also it is important that they can be
constructed easily on the basis of little information.

a
1
+ a

2

0

1

µ

a

µ

1

0 xx

(a) (b)

_________
2

a a
1 2 −a

Fig. 1.18. (a) Central triangular number; (b) Central triangular number
symmetrical about µ.

Assume while dealing with an uncertain value we are able to specify
the smallest and largest possible values, i.e. the supporting interval
A = [a1, a2]. If further we can indicate a value aM in [a1, a2] as most
plausible to represent the uncertain value, then the peak will be the
point (aM , 1). Hence with the three values a1, a2 and aM , one can
construct a triangular number and write down its membership function
(1.12). That is why the triangular number is also denoted by

A = (a1, aM , a2). (1.14)

A central triangular number is symmetrical with respect to the axis µ
if in (1.13) a1 = −a, a2 = a, hence aM = 0 (see Fig. 1.18(b)). According
to (1.14) it is denoted by

A = (−a, 0, a).
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It is very suitable to express the word small. The right branch (segment)
of A = (−a, 0, a), i.e. when 0 ≤ x ≤ a, can be used to describe positive
small (PS), for instance young age, small profit, small risk, etc. We can
denote it by Ar = (0, 0, a).

More generally, the left and right branches of the triangular number
(1.14) can be denoted correspondingly by Al = (a1, aM , aM ) and Ar =
(aM , aM , a2). They will be considered as triangular numbers and called
correspondingly left and right triangular numbers. The left triangular
number Al (see Fig. 1.17) is suitable to represent positive large (PL) or
words with similar meaning, for instance old age, big profit, high risk,
etc. provided that aM is large number.

1.6 Trapezoidal Fuzzy Numbers

A trapezoidal fuzzy number A or shortly trapezoidal number (see
Fig. 1.19) is defined on R by

A
4
= µA(x) =



















x−a1

b1−a1
for a1 ≤ x ≤ b1,

1 for b1 ≤ x ≤ b2,
x−a2

b2−a2
for b2 ≤ x ≤ a2,

0 otherwise.

(1.15)

It is a particular case of a fuzzy number with a flat.
The supporting interval is A = [a1, a2] and the flat segment on

level α = 1 has projection [b1, b2] on the x-axis. With the four values
a1, a2, b1, and b2, we can construct the trapezoidal number (1.15). It
can be denoted by

A = (a1, b1, b2, a2). (1.16)

If b1 = b2 = aM , the trapezoidal number reduces to a triangular
fuzzy number and is denoted by (a1, aM , aM , a2). Hence a triangular
number (a1, aM , a2) can be written in the form of a trapezoidal number,
i.e. (a1, aM , a2) = (a1, aM , aM , a2).

If [a1, b1] = [b2, a2], the trapezoidal number is symmetrical with re-
spect to the line x = 1

2(b1 + b2) (see Fig. 1.20). It is in central form and
represents the interval [b1, b2] and real number close to this interval.
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x

1

0 a
1 1 2 2

ab b

µ

Fig. 1.19. Trapezoidal fuzzy number.

1

1 2______________

2

x

 
0a

1 1 2
a

2
b b + b b

µ

Fig. 1.20. Trapezoidal number in central form.

Similarly to right and left triangular numbers (Section 1.5) we can
introduce right and left trapezoidal numbers as parts of a trapezoidal
number.

The right trapezoidal number denoted Ar = (b1, b1, b2, a2) has sup-
porting interval [b1, a2] and the left denoted Al = (a1, b1, b2, b2) has
supporting interval [a1, b2]. Especially they are suitable to represent

small
4
= Ar = (0, 0, b2, a2) (Fig. 1.21(a)) and large

4
= Al = (a1, b1, b2, b2)

where b1 is a large number (Fig. 1.21(b)).
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1
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Fig. 1.21 (a) Right trapezoidal number Ar representing small; (b) Left
trapezoidal number Al representing large.

1.7 Fuzzy Relations

Definition of Fuzzy Relation

Consider the Cartesian product

A × B = {(x, y) | x ∈ A, y ∈ B},

where A and B are subsets of the universal sets U1 and U2, respectively.

A fuzzy relation on A × B denoted by R or R(x, y) is define as the
set

R = {((x, y), µR(x, y))|(x, y) ∈ A × B,µR(x, y) ∈ [0, 1]}, (1.17)

where µR(x, y) is a function in two variables called membership func-
tion. It gives the degree of membership of the ordered pair (x, y) in R
associating with each pair (x, y) in A×B a real number in the interval
[0, 1]. The degree of membership indicates the degree to which x is
in relation with y. We assume that µR(x, y) is piecewise continuous or
discrete in the domain A×B; it describes a surface. Formally, the fuzzy
relation R is a classical trinary relation; it is a set of ordered triples.
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The definition (1.17) is a generalization of definition (1.6) for fuzzy
set from two-dimensional space (x, µA(x)) to three-dimensional space
(x, y, µA(x, y)).6 Here we also identify a relation with its membership
function.

The fuzzy relation in comparison to the classical relation possesses
stronger expressive power while relating x and y due to the membership
function µR(x, y) which assigns specific values (grades) to each pair
(x, y).

Common linguistic relations that can be described by appropriate
fuzzy relations are: x is much greater than y, x is close to y, x is relevant
to y, x and y are almost equal, x and y are very far, etc.

Example 1.12

Consider the fuzzy relation which consists of finite number of ordered
pairs,

R = {((x1, y1), 0), ((x1, y2), 0.1), ((x1 , y3, 0.2),
((x2, y1, 0.7), ((x2 , y2, 0.2,((x2, y3, 0.3),
((x3, y1), 1), (x3, y2), 0.6), ((x3 , y3), 0.2))};

it can be described also by the table (or matrix)

R 4
=

y y1 y2 y3

x

x1 0 0.1 0.2
x2 0.7 0.2 0.3
x3 1 0.6 0.2

where the numbers in the cells located at the intersection of rows and
columns are the values of the membership function:

µR(x1, y1) = 0, µR(x1, y2) = 0.1, µR(x1, y3) = 0.2,
µR(x2, y1) = 0.7, µR(x2, y2) = 0.2, µR(x2, y3) = 0.3,
µR(x3, y1) = 1, µR(x3, y2) = 0.6, µR(x3, y3) = 0.2.

Assuming that x1 = 1, x2 = 2, x3 = 3, y1 = 1, y2 = 2, y3 = 3, we
can present schematically R by points in the three-dimensional space
(x, y, µ) (see Fig. 1.22).
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Fig. 1.22. Fuzzy relation R describing x is greater than y.

Since the values of the membership function 0.7, 1, 0.6 in the direc-
tion of x below the major diagonal (0, 0.2, 0.2) in the table are greater
than those above in the direction of y, 0.1, 0.2, 0.3, we say that the
relation R describes x is greater than y.

The fuzzy relation R can be expressed also as a fuzzy graph
(Fig. 1.23). The numbers at the segments are the degrees of mem-
bership.

x

0.3

0.2

0.2

0.6

1

0.2

0.1            0.7

3

2

1

3

2

1

y

y

y

x

x

Fig. 1.23. Fuzzy relation R presented as a fuzzy graph.
2
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Example 1.13

Consider the following two sets whose elements are business
companies: A = {company a1, company a2, company a3}, B =
{company b1, company b2}. Let R be a fuzzy relation between the two
sets that represents the linguistic relation very far concerning distance
between companies:

R = {((companya1, companyb1), 0.9),

((companya1, companyb2), 0.6),

((companya2, companyb1), 1),

((companya2, companyb2), 0.4),

((companya3, companyb1), 0.5),

((companya3, companyb2), 0.1)}.

The relation can also be presented by the table

R 4
=

company b1 company b2

company a1 0.9 0.6
company a2 1 0.4
company a3 0.5 0.1

The membership values indicate to what degree the corresponding
companies are very far from each other. For instance, company a2 and
company b1 are very far (degree of membership 1) while companies a3

and b2 are not very far (degree of membership 0.1).
2

1.8 Basic Operations on Fuzzy Relations

Let R1 and R2 be two fuzzy relations on A × B,

R1 = {((x, y), µR1
(x, y))}, (x, y) ∈ A × B,

R2 = {((x, y), µR2
(x, y))}, (x, y) ∈ A × B.

We use the membership functions µR1
(x, y) and µR2

(x, y) in order
to introduce operations with R1 and R2 similarly to operations with
fuzzy sets in Section 1.3.
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Equality

R1 = R2 if and only if for every pair (x, y) ∈ A × B,

µR1
(x, y) = µR2

(x, y).

Inclusion

If for every pair (x, y) ∈ A × B,

µR1
(x, y) ≤ µR2

(x, y),

the relation R1 is included in R2 or R2 is larger than R1, denoted by
R1 ⊆ R2.

If R1 ⊆ R2 and in addition if for at least one pair (x, y),

µR1
(x, y) < µR2

(x, y),

then we have the proper inclusion R1 ⊂ R2.

Complementation

The complement of a relation R, denoted by R, is defined by

µ
R

(x, y) = 1 − µR(x, y), (1.18)

which must be valid for any pair (x, y) ∈ A × B.

Intersection

The intersection of R1 and R2 denoted R1
⋂R2 is defined by

µR1∩R2
(x, y) = min{µR1

(x, y), µR2
(x, y)}, (x, y) ∈ A × B. (1.19)

Union

The union of R1 and R2 denoted R1
⋃R2 is defined by

µR1∪R2
(x, y) = max{µR1

(x, y), µR2
(x, y)}, (x, y) ∈ A × B. (1.20)

The operations intersection and union are illustrated in the following
example.
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Example 1.14

Consider the relations R1 and R2 given by the tables

R1
4
=

y1 y2 y3

x1 0 0.1 0.2
x2 0 0.7 0.3
x3 0.2 0.8 1

R2
4
=

y1 y2 y3

x1 0.3 0.3 0.2
x2 0.5 0 1
x3 0.7 0.3 0.1

Using definitions (1.19) and (1.20) for each ordered pair (xi, yj), i, j =
1, 2, 3, gives

R1∩R2
4
=

y1 y2 y3

x1 0 0.1 0.2
x2 0 0 0.3
x3 0.2 0.3 0.1

; R1∪R2
4
=

y1 y2 y3

x1 0.3 0.3 0.2
x2 0.5 0.7 1
x3 0.7 0.8 1

A comparison between the corresponding membership values in R1∩
R2 and R1 ∪R2 shows that R1 ∩R2 ⊂ R1 ∪R2 (proper inclusion).

2

Direct Product

Consider the fuzzy sets A and B

A = {(x, µA(x)), µA(x) ∈ [0, 1]},

B = {(y, µB(y)), µB(y) ∈ [0, 1]}.
defined on x ∈ A ⊂ U1 and y ∈ B ⊂ U2, correspondingly.

We introduce two types of direct products which will be used in the
next chapter.

Direct min product of the fuzzy sets A and B denoted A ×. B with
membership functions µ

A×. B
is a fuzzy relation defined by

A ×. B = {(x, y), min(µA(x), µB(y)), (x, y) ∈ A × B}, (1.21)

which means that we have to perform the Cartesian product A×B and
at each pair (x, y) to attach as membership value the smaller between
µA(x) and µB(y).
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Direct max product of the fuzzy sets A and B denoted A×̇B with
membership function µ(A×̇B)(x, y) is a fuzzy relation defined by

A×̇B = {(x, y), max(µA(x), µB(y)), (x, y) ∈ A × B}. (1.22)

Here each pair (x, y) has for membership value the larger between µA(x)
and µB(y).

Example 1.15

Given the fuzzy sets

A = {(x1, 0), (x2, 0.1), (x3, 1)},

B = {(y1, 0.3), (y2, 1), (y3, 0.2), (y4, 0.1)},
the direct min product and the direct max product according to (1.21)
and (1.22) are the fuzzy relations

A ×· B 4
=

y y1 y2 y3 y4

x

x1 0 0 0 0
x2 0.1 0.1 0.1 0.1
x3 0.3 1 0.2 0.1

A×̇B 4
=

y y1 y2 y3 y4

x

x1 0.3 1 0.2 0.1
x2 0.3 1 0.2 0.1
x3 1 1 1 1

.

2

1.9 Notes

1. The formal development of set theory began in the late 19th cen-
tury with the work of George Cantor (1845–1918), one of the most
original mathematicians in history. Set theory has been used to
establish the foundations of mathematics and modern methods of
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mathematical proof. Cantor’s sets are crisp. Each element under
consideration either belongs to a set or it does not; hence there is
a line drawn between the elements of the set and those which are
not. The boundary of a set is rigid and well defined (see Exam-
ple 1.5). However in reality things are rather fuzzy than crisp.

2. A paradox coming from ancient Greece has caused serious prob-
lems to logicians and mathematicians. Consider a heap of grains
of sand. Take a grain and the heap is still there. Take another
grain, and another grain, and continue the process. Eventually ten
grains are left, then nine, and so on. When one grain is left, what
happens with the heap. Is it still a heap? When the last grain is
removed and there is nothing, does the heap cease to be a heap?
There are many paradoxes of similar nature called “sorites.” This
word comes from “soros” which is the Greek word for heap. For
instance let us apply the above procedure to the cash (say, one
million) of a rich person. He/she spends one dollar and is still
rich; then another dollar and so on. When one hundred dollars
are left, what happens to his/her richness? When does that per-
son cease to be rich? In the crisp set theory such dilemmas are
solved by sort of appropriate assumptions (as in Example 1.5) or
by decree. In the case of the heap a certain natural number n is
to be selected; if the number of sand grains is ≥ n, then the grains
constitute a heap; n−1 sand grains does not form a heap anymore.
This defies common sense. Also how to select the number n? Is
it 100, 1000, or 1,000,000, or larger? Common sense hints that
the concept heap is a vague one. Hence a tool that can deal with
vagueness is necessary. The concept of fuzzy set, a generalization
of Cantor’s sets, is such a tool (see Example 1.7).

The following thoughts by Bertrand Russell (1923) are quoted
very often: “All traditional logic habitually assumes that precise
symbols are being employed. It is therefore not applicable to this
terrestrial life, but only to an imagined celestial one. The law of
excluded middle is true when precise symbols are employed but
it is not true when symbols are vague, as, in fact, all symbols
are.” “All language is vague.” “Vagueness, clearly, is a matter of
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degree.”

An important step towards dealing with vagueness was made by
the philosopher Max Black (1937) who introduced the concept of
vague set.

3. The concept of fuzziness was introduced first in the form of fuzzy
sets by Zadeh (1965).

According to dictionaries (see for instance Merriam-Webster’s
Collegiate Dictionary and The Heritage Illustrated Dictionary of
the English Language) and also use in everyday language the words
fuzzy, vague, ambiguous, uncertain, imprecise, and their adverbs,
are more or less closely related in terms of meaning. This state-
ment is supported by the following brief explanations.

Fuzzy: not sharply focused, clearly reasoned or expressed; con-
fused; lacking of clarity; blurred.

Vague: not clearly expressed, defined, or understood; not sharply
outlined (hazy); lack of definite form.

Ambiguous: capable of being understood in two or more possible
ways; doubtful or uncertain (synonym: vague).

Uncertain: not certain to occur; not clearly identified or defined;
lack of sureness about something; lack of knowledge about an
outcome or result.

Imprecise: not precise, inexact, vague.

There are various opinions on the meaning of these words and
their use and misuse in common language, philosophy, and in fuzzy
logic. We leave it to philosophers and linguistists to debate and
deliberate on the subject if they choose to do it. Poper (1979) for
instance sounds quite discouraging: “One should never quarrel
about words, and never get involved in questions of terminology.
One should always keep away from discussing concepts. What we
are really interested in, our real problems, are factual problems,
or in other words, problems of theories and their truth.” There is
some truth in Poper although he goes to an extreme. We think it
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will be useful for the better understanding of this book to provide
a clarification.

Fuzzy, adv. fuzziness, in fuzzy logic is associated with the concept
of graded membership which can be interpreted as degree of truth
(see Section 2.6). The objects under study in fuzzy logic admit of
degrees expressed by the membership functions of fuzzy sets (see
Section 1.2). Problems and events in reality involving components
labeled as vague, ambiguous, uncertain, imprecise are considered
in this book as fuzzy problems and events if graded membership
is the tool for their description. In other words, when gradation
is involved, vagueness, ambiguity, uncertainty, imprecision are in-
cluded into the concept of fuzziness.

Beside the fundamental volume Fuzzy Sets and Applications: Se-
lected Papers by L.A. Zadeh (1987), here we list several impor-
tant books dealing with fuzzy sets and fuzzy logic used in this
text: Kaufmann (1975), Dubois and Prade (1980), Zimmermann
(1984), Kandel (1986), Klir and Folger (1988), Novák (1989), Ter-
ano, Asai, Sugeno (1992).

Fascinating popular books on fuzzy logic are written by McNeill
and Freiberger (1993) and Kosko (1993).

4. The notion of fuzzy set is sometimes incorrectly considered as
a type of probability. Although there are similarities and links
between fuzzy sets and probability, there are also substantial dif-
ferences. For instance, grade or degree of membership is not a
probablistic concept. In Example 1.8 (tall men), a man who is
180 cm tall has a degree of membership 0.78 (or 78%) in the set
tall men. We can say this person is 78% tall (almost tall), but we
can not say that there is a probability of 78% that he is tall.

5. The concept of fuzzy number was introduced after that of fuzzy
set. Valuable contributions to fuzzy numbers were made by Nah-
mias (1977), Dubois and Prade (1978), and Kaufmann and Gupta
(1985) (see also G. Bojadziev and M. Bojadziev (1995)).

In many applications both fuzzy numbers and fuzzy sets can be
used equally well although presentations with fuzzy numbers are
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somewhat simpler. For general studies and also for facilitating
fuzzy logic, fuzzy set theory is a very suitable tool.

6. Fuzzy relations were introduced by Zadeh (1971) as a generaliza-
tion of both classical relations and fuzzy sets.


